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Representations of the quantum algebra U,(su171) 

I M Burban &d A U Klimyk 
Institute for Theoretical Physics. Kiev 130, Ukraine 

Received 17 September 1992 

Abstract All irreducible representations of the quantum group Uq(sul,l) are @en. They are 
determined by two complex numbers Infinitesimafly unitary representations are s e p e m d  from 
the Set of irreducible representations. It is shown that the symmebic operators of irreducible 
infinitesimally unitary representations corresponding to generators of the Lie algebra SUL.L admit 
self-adjoint extensions. 

1. Introduction 

Quantum groups and algebras appeared in the quantum method of the inverse scattering 
problem. They are of great importance for applications in quantum integrable systems, in 
quantum field theory, and in statistical physics. To apply them it is neccessary to have a 
well developed theory of their representations. Representations of the simplest quantum 
algebras are of great significance for applications. There is, more or less, a clarity about 
finitedimensional representations of quantum groups and algebras: inequivalent irreducible 
representations are classified, uniqueness of highest weights has been proven, the relation 
to irreducible representations of Lie groups and algebras has been shown, and so on (Ross0 
1988). c it is not so clear with infinitesimally unitary representations of ‘non-compact’ 
quantum algebras and with unitary representations of non-compact quantum groups. 

In this paper we deal with infinite-dimensional representations of the quantum algebra 
U,(SUI,I). Such representations were considered by Klimyk and Groza (19891, Masuda 
et a1 (1990) and Vaksman and Korogodsky (1990).~ A review of these results has been 
given by Klimyk et al (1990). The representations considered in these papers are given 
by a complex number A and by a number e E IO, 1/2}. They are a q-analogue of s the 
corresponding representations of the classical Lie group SU(1,l). These representations do 
not exhaust all irreducible (and unitary) representations of U&UI,I). 

There are representations of the Lie algebra su(l,l) which lead to representations of the 
universal covering group SU(1, 1) for the Lie group SU(1,l). Such representations are given 
by two complex numbers. In this paper we consider a q-analogue of these representations 
for Uq(sul,~). Here the strange series of infinitesimally unitary representations of Uq(su1.~) 
appears. They are given by two continuous parameters. These representations disappear 
for the Lie algebra su(l.1) (when q=1). CleGly, all representations in the papers mentioned 
above are a part of the set of our representations. Let us emphasize that representations of 
Uq(sul.l) are related to the q-oscillators (Kulish and Damaskinsky 1990). 

We also consider the problem of self-adjointness of representation operators. This 
problem is solved for the Lie group SU(I,l) and for other semi-simple Lie groups. There 
is the well developed theory of self-adjointness of representation operators for Lie algebras 
( B a t  and Raczka 1977). For infinitedimensional representations of quantum algebras 
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no results in this area existed. As we shall see, the situation for the quantum case is 
different from the case of Lie groups. For example, eigenvectors of the representation 
operator T ( H )  (see section 2) are not analytical vectors of an irreducible infinite-dimensional 
representation of the quantum algebra U,(sul.l). Nevertheless, the operators T(E+ + E-) 
and r(iE+-iE-), as in the classical case, admit self-adjoint extensions. 

In the classical case, the discrete series representations are realized in the Bargmann 
space. The discrete series representations of U,(sul.l) can be realized in the q-analogue 
of the Bargmann space (Bracken er nl 1991). This realization may be used to study self- 
adjoinmess of operators T(E+ + E-) and T(iE+-iE-). However, we use the method of 
Jacobi matrices because it can be applied to other series of representations of U,(SU~J). 

In sections 3 and 4 the 
standard representations T,, of U,(SU,J) are constructed. The classification of irreducible 
representations of Uq(sul , l )  is derived in section 5. In section 6 we give infinitesimally 
unitary representations of this quhtum algebra. Section 7 is devoted to the investigation of 
self-adjointness of representation operators. 

I M Burban and A U Klimyk 

In section 2 we define the quantum algebra U,(sul,l). 

2. The quantum algebra U,(sul.l) 

We fix a complex number 9 which does not coincide with a root of unity and give the 
elements H, E+, E- obeying the commutation relations 

where q =exp h. The associative algebra A generated by H ,  E+, E- is called a deformation 
of the universal enveloping algebra U(sl2) of the Lie algebra sl(2,C). 

The structure of a Hopf algebra is introduced into A (Vaksman and Soibelman 1988). 
The algebra A with this structure is called the quantum algebra U,(slz). It consists of 
elements which are polynomials of E+, E- and finite or infinite series of H .  In order to 
avoid infinite series, instead of H ,  one considers k = qHl2 and k-I = q-H/z. This leads to 
quadratic relations for E+, E-, k, k-' (Vaksman and Soibelman 1988) 

kE+k-' = 9Ii2E+ kE-k-' = q-'/'E.. 

The centre of the algebra Uq(s12) is generated by one Casimir element 

This element commutes with all elements of U,(slz). 
One can introduce *-structures into the Hopf algebra U,(slz) which tum this algebra into 

*-Hopf algebras. They are g-analogues of real forms of the complex Lie algebra sI(2, C). 
If q E R, then the *-structure generated by the relations 

H * = H  E ' - - E -  + -  EI.=-E+ 
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gives the quantum algebra U,(sul,l) which is an analogue of the real form su1.1 of the Lie 
algebra sI(2, e). 

By a linear representation T of the algebra Uq(s12) we mean a homomophism of U,(slz) 
into the algebra of linear operators (bounded or unbounded)~on a Hilbert space, defined on 
an everywhere dense invariant subspace D, such that the operator T ( H )  can be diagonalized 
and has a discrete spectrum. Such representations of U, (sI2) lead to linear representations 
of the associative algebra U,(sul.l) which in general are not representations of the *-Hopf 
algebra U,(sul,l). 

To determine a representation T of U,(slz) it is sufficient to give the operators T(E+),  
T(E-) ,  T ( H )  for which relations ( I )  and (2) are fulfilled on an everywhere dense subspace 
D. If in addition the equalities 

T ( H ) *  = T ( H )  T(E+)* = T(E1)  (4) 

are satisfied on D, then T is called an infinitesimally unitary representation of the associative 
algebra U,(SU,,~). In this case T is a representation of the quantum algebra (of the 
*-Hopf algebra) U,(SU~,~)  which is also called a *-representation. Below, dealing with 
infinitesimally unitary representations of U&U,,I), we shall omit the word ‘infinitesimkly’. 

In the papers by Klimyk and Gmza (1989), Masuda et d (1990) and Vaksman and 
Korogodsky (1990) representations T (unitary and non-unitary) are considered for which 
the spectrum of the operator T ( H )  consists of integers or half-integers. In this paper we 
deal with representations of U(sul.l) for which this condition may not hold. In this way 
we are led to infinite-dimensional representations of U,(sul,,) which are parametrized by 
two c o q l e x  numbers. They are a q-analogue of representations of the universal covering 
group SU(1,l) for the Lie group SU(1,l). However, in the quantum case there are some 
peculiarities which are absent in the classical case. 

3. The representations T., 

Let E be a fixed complex number and let Vc be a complex Hilbert space with the orthonormal 
basis 

(Im); m = n + e ,  n = 0, il, +2, . . .). (5) 

For every complex number a we construct the representation T,, of the associative algebra 
U,(slz) (and of the associative algebra U,(SUI,I)) in the Hilbert space V, defined by the 
equations 

Hlm) =mlm) (6) 

E+lm) =[-a+mllm+l)  E - lm)=[-n -ml lm- l )  (7) 

 where [b] denotes a q-number 

[a] = (p - q-6/2)(q’/2 - q-I/z)-l, 

A direct verification shows that the operators (6) and (7) are defined on the everywhere 
dense subspace D of the Hilbert space V, consisting of finite linear combinations of the 
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basis elements (5). transform V into V, and satisfy relations (1) and (2) on D. For the 
Casimir operator T.,(C) we have 

I M Burban and A U Kiimyk 

G A C ) I ~ )  = [a + 1/21~1m). (8 )  

There exist equivalence relations in the set of representations Ta6. First of all, it is seen 
from equations (6) and (7) that matrices of the representations T,, and Tac+k coincide for 
k E Z, where Z is the set of integers. For this reason we restrict ourselves to the case 

0 <Re  E c 1 .  (9) 

The next type of equivalence relations appear because of the periodicity of the function 
w(z) = [z]. We set q = exph, h E R. Then the function 

w(z) = [z] = (q@ -q-'/2)(ql/z - 4 - IP ) - l  (10) 

is periodic with period 4nilh. Therefore, it follows from (6) and (7) that 

T,, = To+4n~/h,s ~ fork E Z, 

For the function (10) we also have 

w(z) = -w(z +Zni/h). 

For this reason, replacement of a by a+2xi/h in equations (6) and (7) leads to the equations 

Him) = mlm) (12) 

E+lm)=-[-a+mllm+l) E-Im)=-[-a-mllm-l). (13) 

They give the representation of U,(sul,l) equivalent to the representation T,, and the 
equivalence operator is diagonal with respect to the basis [ Im)] with numbers 2zl on the 
main diagonal. Thus 

Toe - To+j?nki.e ~ k E Z. (14) 

If q = exp ih, h E R, then 

T,, = Ta+4nk.r fork E Z 

Ta, - To+kk,r fork E Z. 

If q = exp ( h ~  +ihd where h, and hz are non-vanishing real numbers, then the function 
w(z) = [zl has no periodicities and in this case we do not have analogous equivalences for 
the representations Tas. 

The representations T,, and T-a-~,e are also equivalent if they are irreducible. We 
discuss these equivalences below. 
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4. Realizations of the representations TOL 

If f ( z )  is a function of a complex variable z ,  the operator Dz defined by the equation 

gives the so-called q-differentiation. We consider below functions f(z, i) depending on z 
and I. For these functions we distinguish the q-differentiations Dz and Di. 

Let WO, be the linear space of complex functions F(z )  infinitely q-differentiable at all 
points except possibly for the point z = 0 and such that: 
(a) For all positive numbers b the equality F(bz) = b&F(z) is satisfied 
(b) F(e"z) = eZiKCF(z). 

The homogeneity condition F ( b z )  = b%F(z)  means that a function F(z)  is'uniquely 
determined by its values on the sphere SI in the complex space C (Vilenkm and Klimyk 
1991, section 6.4.1). Namely, if zo E SI is a point on the line connecting z with the point 
0 E C, then 

2L0-<) 2r 

F ( z )  = 1:l (;) F(z0).  

The space W., may be realized as the space of functions 

f(eie) = e-ifaF(ei@/z). (15) 
These functions are uniquely determined by the functions F.  We define the scalar product 

f~ (eie)fdei@) dB ~ . (16) 

in the space of functions~f(e") and close it with respect to the norm l l f l l  = (f, f)'/'. As 
a result, we obtain the Hilbert space Lz(O, k). The scalar product (16) can be transferred 
into the space W., which can also be closed to obtain a Hilbert space. 

Let us consider F ( z )  as a function~of z and Z. Then the functions 

_ _ .  

0 

F,(z, 2) = z"+"'?'-~ m = E  + n n E Z (17) 
form a basis in W,, orthogonal with respect to the scalar product defined. 

Direct evaluations show that the operators 

TL,F(z, Z) = q-'/2F(q'/Zz, Z) = q"*F(z, q-'lz- 2) 

defined on the space WO, satisfy commutation relations (1) and (2). We also have 
~t ( k ) p + m - o - m  - m/Z n+m-o-m 

T! ( ~ - ) ~ u + m ~ o - m  = - [a  +mlZa+m-I-a-m+l z 

O+m-o-m = -la - m]Zo+m+l~o-m-l 

O f  z - 9  Z~ z 

06 

Td,(E+)z z . .  
that is, the representation T6, is given by equations (6) and (7) with respect to the basis 
(17). This means that it is equivalent to the representation To<. 
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5. Irreducible representations 

Irreducibility of the representations T,, is analysed in the same way as in the case of the Lie 
group SU(I,I) (Lang 1975). For this reason we shall omit details in our reasoning. In the 
carrier space of the representation Tu, invariant subspaces appear because of the vanishing 
of some of the coefficients 

I M Burhan and A U Klimyk 

[-a + m ]  = [-a + ~ + n l  [-a -m] = [-a - E  - n ]  n E Z 

from equations (6) and (7). This leads to the following theorem: 

Theorem 1 .  The representation T,, of the algebra Uq(sI2) (and of the algebra U,(SUIJ)) 
is irreducible if and only if a + E (mod Z) and a f - E  (mod Z). If E = 0 or E = then 
these inequalities are replaced by one condition a $ E (mod Z). 

There exist the equivalence relations T., - T-r-,,c in the set of irreducible 
representations Tat. The equivalence operator is evaluated in the same way as in the classical 
case (see, for example, Vilenkin and Klimyk (1991). section 6.4.4). For T,, and T-=-I,< the 
equivalence operator A is diagonal with respect to the basis (Im)) and its diagonal elements 
are of the form 

It is possible to show that we have described all equivalence relations for the representations 

E (mod Z) 
To, of U,(SUl,l). 

Let us consider reducible representations Toe. Let E = 0 or E = $. If a 
then we denote a by 1. For 1 0 the invariant subspace 

vf =span {lm), -I 6 m 4 I )  

exists in V,. The finite-dimensional irreducible representation 7j of the algebra Uq(sul,l) acts 
on this subspace which is well known in the theory of finite-dimensional representations 
of U,(slz). Thequotient space VJV! decomposes into the direct sum of two invariant 
subspaces 

vi+' =span {lm), I < m) V;l-l= span { ~ m ) , m  c -11. 

The irreducible representations of U,(SU,.I) acting on these subspaces are denoted by T,' 
and q- respectively. If 1 = -; then the subspace is absent and V,p decomposes into 
the orthogonal sum of two invariant subspaces 

V$ = span (~m), m 2 1/21 v-'/' l j 2  -span - {"m < -w 
The irreducible representations T& and TG2 act on these subspaces respectively. 

decomposes into the orthogonal sum of two invariant subspaces v;! and ?:, where 
If E = 0 or E = 4 and 1 < -l/2, then the invariant subspace exists in V, which 

V;' = span {im), m 2 - I )  V: = span {~m), m < 1). 
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The irreducible representations of Uq(sul,I) are defined on these subspaces; they are denoted 
by i?-, and respectively. The finitedimensional representation T-r-1 acts on the 
quotient space v</(V;;' + VJ). 

Now let E # 0 and E # 112. If a = E (mod Z) then a = E + n, where n E Z. For 
this reason there exists the invariant irreducible subspace in V, with the highest vector of 
weight a. We denote it by Vp. One has 

Vp = span[lm), m = a  - k. k =0,1,2, ...I. 
The representation induced by To, on this subspace is denoted by To-. The representation 
in the quotient space V,/Vp is denoted by 7:. This representation is also irreducible. If 
a - E  (mod %) then the invariant irreducible subspace 

Vp=[ lm) ,  m = - a + k ,  k = 0 , 1 , 2  ,...) 

with the lowest vector of weight -a exists in V,.  we denote the representation induced by 
Tar in Vp by TZ-,. The representation on the quotient space V,/Vp is irreducible and is 
denoted by T;. 

There are equivalence relations in the set of irreducible representations which are 
irreducible components of reducible representations TaG: Namely, if E = 0 or E = ?. 2' 

then 
- 

T,+ - TZI T-; - L.. 
In other words, in this case we obtain irreducible representations T,', 1 = - i , O ,  4, 1, . . ., 
a n d q - , 1 = 4 , 0  ,-;,- 1, ... . The spectrum of the operator q+(H) coincides with 
I + 1, I + 2, I + 3, . . . and that for the operator T , - ( H )  is I - 1, 1 - 2.1 - 3, . . . . 

If E # 0 and E # 4. then the representation TGI is equivalent to the representation 
and the representation TLl is equivalent to the representation ?To. Thus, in this case we 
obtain irreducible painvise non-equivalent representations T; and T:, where a f 0 (mod Z) 
and a f 4 (mod Z). The spectrum of the operator T;(H) coincides with the set of points 
a -  I -k, k =0, 1,2, ..., and that of the operator T:(H) is a +  1 +k, k = 0 , 1 , 2 ,  .. .. 

Thus, we can constructed several classes of irreducible representations of the algebra 
U,(sul.l). If E = 0 or E = 4 then these classes are: 

(a) The representations TA<, where Re a > -;, a + E (mod Z) and also 0 < Im a < k / h  
if 9 = exp h, h E R, and 0 < Re a < ~ 2 n / h  if 9 = exp ih, h E R, (q does not coincide 
with a root of unity). 

(b) The representations q+, T:, I = -?, I 0, i ,  1, .. .. 
(c) Finite-dimensional irreducible representahons. 

If E + 0 (mod Z) and E $ 1  (mod Z) (let us recall that 0 < Re E c l), then we have 
the following classes of irreducible representations: 

(a) The representations T,,,a + E (mod Z), a f --E (mod Z)),Re a > -4 and also 
0 < Im a c 2n/h if 4 =exp h, h E R ,  a n d O < R e a  c 2n/h if q =exp ih, h E R 
(h is  not a root of unity). 

(b) The representations T:,~ T;. 
(c) Finite-dimensional irreducible representations. 

The associative algebra Uq(sul,~) has no other algebraically irreducible representations. 
Let T denote an irreducible representation of this algebra. Then the operator T(C) is 
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multiple of the unit operator on the carrier space of the representation T. The operator 
T(H) can be diagonalized and has a discrete spectrum. Let Im) be an eigenvector of T(H) 
corresponding to an eigenvalue m = E + n, n E Z. We construct the vectors 

I M Burbun and A U Klimyk 

. . . Im - 2) = T(E-)’lm) Im - I )  = T(E-)lm) Im) 

Im + 1) = T(E+)lm) Im +2) = T(E+)’Im) .... 

It is proved in the standard manner that the vectors Im + k) ,  k E Z, are eigenvectors for the 
operator T ( H )  corresponding to the eigenvalues m + k respectively. Since 

T(E-)T(E+)Im) = T(C)lm) -dim) 

where d is a constant and T(C) is the Casimir operator, then up to constants we have 

T(E-)lm + i) = T(E-)T(E+)Im + i - 1) 

= T(C)lm + i  - 1) -blm+i - 1) = Im+i - 1) 

T(E+)lm - i) = T(E+)T(E-)Im - i + 1) 

= T(E-)T(E+)lm - i + 1) - clm - i + 1) = Im - i + 1). 
This means that the spectrum of the operator T ( H )  is simple. More detailed calculations 
show that the representation T is equivalent to the representation T,, if T(C) = and 
the spectrum of T ( H )  does not terminate from below or from above. It is equivalent to the 
representation T: (to the representation T;) if T(C) = [a++]’ andthis spectrum terminates 
from below (respectively from above) but does not terminate from the other side. If the 
spectrum of T(H) terminates from both sides, then T is equivalent to a finite-dimensional 
representation. 

6. Unitary representations 

Let D be the linear subspace in the carrier Hilbert space V, of the representation Toe spanned 
by the basis vectors Im), m = E + n, n E Z. We set q = exp h, h E R. Let us find for 
which representations To, relations (4) are satisfied on D. It is clear that the condition 
T(H)’ = T ( H )  means that the spectrum of the operator T(H) is real, that is 0 < E c 1. 
The condition T(E+)* = -T(E-) means that for all m = E +n, n E Z, the condition 

-~ - a + m  - 1  = a + m  

must be satisfied, where the bar means complex conjugation. This condition is fulfilled if 
and only if U = ip - f ,  p E R. Thus, the representations Tjp+2,G, p E R, 0 < E -= 1, are 
unitary. They form the principal unitary series of representations of the quantum algebra 

In order to find other unitary representations of U4(suI.,) we introduce, as in the classical 
case (see, for example, Vilenkin and Klimyk 1991, section 6.4.6), a new scalar product in 
carrier spaces of irreducible representations. Namely, we pass from the basis {lm)) to the 
basis (Im)’], where 

U, (SUI. I). 
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(see equation (18)), and consider that the basis (Im)’] is orthonormal with respect to the 
new norm. Operators of the representation T,, are given in this basis by the equations 

T&+)Im)‘ = mlm)’ (19) 

(20) 

(21) 

Operators of the representations T,‘ and T; are given in the basis (Im)’] by the same 
equations. In the laSt case values of the parameter m are bounded from below or from 
above. 

As in the classical case, we now verify for which irreducible representations of U(SUIJ) 
the relations (4) are satisfied. Such analysis gives us the following additional classes of 
unitary irreducible representations of U(SUI.I): 

(a) The representations T,, with 0 < E c 1, where E - 1 > a -E  for E > 4 and 

(b) The representations To<, Im a = n /h ,  Re a > -4  (@e strange series). 
(c) All representations T:, a > -;. and T;, a’< i (the discrete series). 
(d) The zero representation. 

Let us remark that in the case of representations of the principal unitary series the 
transition from the basis ( Im) ]  to the basis [lm)’) is given by the diagonal unitary matrix, 
that is Id, I = I .  For this reason operators of representations of this series satisfy relations 
(4) if they are presented in the matrix form with respect to the basis [lm)’], that is, by 
equations (19x21). We also note that the representations T: and T; and their realizations 
were constructed by Kalnins et al (1992). 

It is possible to show that the unitary irreducible representations listed above, exhaust 
all irreducible unitary representations of Uq(su~,~) .  

Let q = exp ih, h E R, is not a root of unity. In the same way as in the previous case, 
it is shown that now we have the following series of irreducible unitary representations of 
U, (SUI, I ) : 

(a) The representations T,,, 0 < E c I ,  a = ip - i, p E R (the principal unitary series). 
(b) The representations TOG. 0 < E < 1, Re a = x / h  (the strange series). 
(c) The zero representation. 

The discrete series representations are absent in this case. 

irreducible unitary representations except for the zero one. 

& ~ E + ) l m ) ’  = ( [a  + m + 11[-a + m])1’2~m + 1)‘ 

T.*(E-)lm)’ = -([-a + m - I][a + m])’/21m - 1)’. 

- E  > a > E - 1 for E c 4 (the supplementary series). 

If q = exp (hl + ihz), h l ,  hz E R, hl # 0, hi # 0,then the algebra U,(SUIJ) has no 

7. Self-adjoint extension of operators 

A natura~problem appears in the theory of representations of Lie algebras conceming 
integrability of these representations to representations of the corresponding Lie groups. 
This problem is solved for finite-dimensional Lie algebras (see, for example, Barut and 
Raczka 1977). This problem is reduced to proving self-adjointness or the existence of 
self-adjoint extensions for operators corresponding to elements of Lie algebras. 

We need to know about existence of self-adjoint extensions of representation operators 
for Lie algebras when we try to embed physical observables (Hamiltonians, operators of 
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momentum, and other operators) into representations of these algebras. The analogous 
problem appears for representations of quantum algebras. ~ Therefore, the problem of self- 
adjointness or of existence of self-adjoint extensions for operators of representations of 
quantum algebras is also important 

In the case of unitary representations T of the quantum algebra (the *-Hopf algebra) 
U4(su~,,) the operators 

I M Burban and A U Klimyk 

T ( M )  = T(E+ + E - )  T ( N )  = T(iE+ - iE-) (22) 

are symmetric. We shall show that for q = exp h, h E R, these operators admit self-adjoint 
extensions for every irreducible unitary representation. 

In the case of representations of Lie algebras, self-adjointness of operators is easily 
proved with the help of results on analytical vectors (Nelson 1959). A vector \U) is analytical 
for an operator A if the series 

converges for some t > 0. If the set V of analytical vectors of a symmetric operator A is 
everywhere dense in a Hilbert space where A operates, then this operator has self-adjoint 
extensions. In the case of representations of the Lie algebra su(l,l) (when q = 1) the 
operators (22) have a dense set of analytical vectors containing the basis vectors Im), and 
therefore they have self-adjoint extensions. A good example of the investigation of existence 
of self-adjoint extensions of representation operators is given in the paper by Mickelsson 
and Niederle (1973). 

The corresponding results for the operators T ( M )  and T ( N )  of representations of the 
quantum algebra U,(SU,J), q # I ,  are not valid. The q-analogue of the Stirling equation 
for [ n ] !  5 [1][2]. . . [n] is of the form 

[n]! q--nln--l)14 ( 1  - q)-"exp C-C,) 

where 0 < q < 1 and 

(Nikiforov and Uvarov 1988). The evaluations similar to those of Mickelsson and Niederle 
(1973) show that for large n one has 

IIT(M)"lm)ll - cq-"'"-"/4 (1 -U" 
if 0 < q < 1, where c is a constant. Therefore, the basis vectors Im) are not analytical 
for the operator T ( M ) .  If q > 1 then replacing q by q-', it is shown that in this case the 
vectors Im) are also not analytical for T ( M ) .  

To investigate the self-adjoinmess of T(M) we apply the method of Jacobi matrices 
(Berezanskij 1968). Jacobi matrices are determined by difference operators L of the second 
order on the real half-axis. These operators are represented in the corresponding basis by 
matrices of the type 
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Let us assume that uj z 0 for all j .  Then the operator L has deficiency indices (0,O) or 
(1,l) (Berezanskij 1968, chapter 7). In the first case the closure of the operator L, defined 
on the dense set of finite vectors (finite linear combinations of basis elements for which L 
has the Jacobi form (23)). is self-adjoint. In the second case L has self-adjoint extensions. 

The elements Im) of the carrier spaces of the representations T,‘ are labelled by the 
numbers m = a + 1, a + 2, . . . . The operators of these representations are of the form 

T,+(ff)lm) = mlm) 

T,+(M)Im) =b(m-l) lm-1)+b(m)Im+1) 

T,‘(N)lm) =~ib(m - I)lm - 1) - ib(m)lm + 1) 

where b(m) = ([m - a ] [a  + m + 1])‘/*. It is easy to see that 

cosh ih(2m - 1) -cosh ih(21+ 1) 
2sinh’;h 

b2(m) = [m -a][a+m + 11 = 

One can see from here that bz(m) > 0 for all m = a + k, k = 1,2.3,. . . . Thus, the 
operator T$(M) is self-adjoint or it has a self-adjoint extension. Existence of a self-adjoint 
extension for the operator T;(M) is proved in the same way. 

In the case of unitary representations of other series the operator T(M) is not of the form 
(23) since the spectrum of the operator T ( H )  for these representations does not terminate 
from below or above. In this case the method of doubling (Berezanskij 1968) is used. We 
introduce the notation 

The operator T ( M )  for the unitary representations under consideration can be represented 
in the form 

T ( M ) l m )  = B(m - l ) lm - 1) + B(m)lm + 1) 
where m = 0,1,2,  . . .. Hence it has the form of a Jacobi matrix with operator coefficients 

where 0 denotes the zero 2 x 2 matrix. If elements of the matrices B(m) are real, then the 
operator T ( M )  has deficiency indices (0.0). (l,l), or (2,2) and it has a self-adjoint extension 
(Berezanskij 1968, chapter 7). 

The basis elements of carrier spaces of representations of the supplementary series are 
labelled by the numbers m = E  + n ,~n  E Z, and 

where 

cosh ih(2m + 1) -cosh ih(2a + 1) 

2sinh’ih 
b2(m) = [m - a][a +m + 11 = 
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We have E - 1 > a z --E for E > $ and -E  z a z E - 1 for E e $. Therefore, for 
all admissible values of the parameters E and m we have bz(m) > 0. This means that 
the operator T(M) for representations of the supplementary series admits a self-adjoint 
extension. 

For the representations To, = T,,-I/?,~ of the principal unitary series we have 

cosh $h(Zm + 1) -cos i h p  
2sinh2~$h 

bz(m) = [m - al[a -t m + 11 = 2 0. 

Therefore, the operator T ( M )  for these representations admits a self-adjoint extension. 

cosh kh(2m + 1) +cosh ih(2r + 1) 
2sinhz$h 

For the representations T,+i,/b, r E R, of the strange series we obtain 

~~ 0. 2 b (m)= 

Thus, in this case the operator also has a self-adjoint extension. 
To prove that the operator T(N) of unitary representations also admits self-adjoint 

extensions, we pass in' equations (6) and (7) from the basis ([m)] to the basis ([m)"], where 
[m)" = i"[m). Then we have 

T(h')lm)" = mlm)" 

T(E-) [m)" = i[-a - mllm - 1)". 

T(E+)[m)" = -i[m - a l [m + 1)" (24) 

(25) 
Representations given by these equations are equivalent to the corresponding representations 
given by equations (6) and (7). The operator T ( N )  in the basis (Im)"] is given by the 
equation for the operator T ( M )  in the basis ([m)]. We proved that the operator T(M) has 
a self-adjoint extension. Therefore, the operator T ( N )  also admits a self-adjoint extension. 

It is shown by Berezanskij (1968) that self-adjoint extensions of symmetric operators 
representable by Jacobi matrices with usual or operator coefficients are related to orthogonal 
polynomials. Values of deficiency indices and dense subspaces on which a symmetric 
operator is self-adjoint are determined by these polynomials. They also define the spectrum 
of the self-adjoint extension. Evaluation of these polynomials for operators T ( M )  and T(N) 
will be given in a forthcoming paper. 

8. Conclusion 

We have found all irreducible representations of the algebra U,(SUIJ). They are given 
by two complex parameters. We separated all infinitesimally unitary representations in the 
set of irreducible representations. There is the principal unitary series, the supplementary 
series, the strange series and the discrete series of infinitesimally unitary representations. 
The strange series disappears when q + 1. 

Irreducible representations of U , ( S U ~ , ~ )  were constructed with the help of the so called 
standard representations To, of this algebra. In the set of representations To, there exist 
equivalence relations which are consequences of the periodicity of the function w(z) = [z]. 
These equivalences lead to the appearance of the Jacobi theta functions in the Plancherel 
measure when we decompose regular or quasiregular representation of U,(SUI,I). 

We also considered the problem of self-adjointness of symmetric operators of 
infinitesimally unitary representations of U,(SU,J). It is shown that the symmetric operators 
T(E+ + E - )  and T(iEt - iE-) of irreducible unitary representations admit self-adjoint 
extensions. Investigations in this area must be continued. In particular, it is necessary to 
study the self-adjoint extensions of all representation operators corresponding to symmetric 
elements of U,(sul.,). 
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